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NOTIONS OF STATISTICS FOR THE CLINICIAN  
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 Clinicians are often resistant to statistics. However, they are essential to be able to observe 
all the events not necessarily visible 'to the naked eye', and to be able to differentiate the 
frequency of the events in which we are interested, compared to a random occurrence. 
  Statistics are useless to demonstrate the action of antibiotics on meningococcal meningitis, 
or on tuberculosis. They will be necessary to measure the incidence of cerebrovascular 
accidents, serious pathologies if any, under antihypertensive treatment compared to untreated 
patients. The difference between the two situations is that in the first one is interested in a 
quick and individual action, almost immediately visible. In the second, we are primarily 
interested in a trend in a group, which will result in a long-term improvement in the prognosis 
of only part of the population treated: the field of statistics is that of the evaluation of trends 
perceptible only at the level of samples or populations, but which can also benefit, on a 
clinical level, to some of the patients treated or observed if not to all.  
 
 This chapter reviews the most common clinical questions and their translation into 
language and statistical tests.  

 
 
 Biostatistics and methodology are inseparable: the data collected must be analyzed… and 
must therefore be collected in such a way as to be analyzable. The construction of a study 
must provide for the type of analysis to be done according to the question asked, and the way 
of collecting the data must obey two sometimes contradictory imperatives, which will have to 
be reconciled:  
 • Describe reality as closely as possible,  
 • Make these data compatible with an existing statistical test allowing the most exact 
comparison between the groups studied.  
 
 
 

I. QUESTIONS ASKED, VARIABLES TO COLLECT,  
ANALYSIS TO DO 

 
 
 Let's start with a banal clinical question and an effective database to make the point more 
intelligible:  
 Thrombocytosis is frequently encountered in clinical medicine. An old aphorism asserts 
that a thrombocytosis greater than 1.106/mm3 corresponds 'in all cases' to essential 
thrombocythemia (ET) (myeloproliferative syndrome). The etiological diagnosis can however 
be difficult to make, including by molecular biology (the JAK2 mutation is only present in 



approximately 60% of cases), and the marrow biopsy may not show suggestive myelofibrosis. 
A 'gold standard' could be the diagnosis carried out after evolution of the patient and 
elimination - if possible - of all the reactive causes.  
 All thrombocytosis greater than 600,000/mm3 in a hospital were combined in a series. This 
database must first be described, and the predictive factors of diagnoses can then be analyzed.  
 
 

II DICHOTOMOUS VARIABLES (PROPORTIONS) 
 

 
 One thousand and forty-seven patients were included: it is necessary to know the 
distribution of the sexes, the number of patients with reactive (RT) or essential 
thrombocytosis (ET) (by defining each class as exclusive of the other). These variables are 
said to be dichotomous because they can only take two values (masculine-feminine, 
essential-reactive, true-false, yes-no). They are also categorical, with no hierarchy between 
the two values. They make it possible to calculate the proportion of women and men affected 
by one or the other of the major causes of thrombocytosis.  
 
 Application :  
  
 Our series includes 509 women and 538 men. The diagnosis of RT was made in 357 
women (70.1% of 509) and 461 men (85.7% of 538). Is this rate significantly different 
between men and women? In other words, is 85.7% - 70.1% equal to (or close to) 0?  
 
 We just posed the null hypothesis: we will conclude, if the difference between the two rates 
is not significantly different from 0, that the two rates are close to each other, similar, and that 
there is no there is no difference between male and female patients. On the contrary, if the 
difference is significantly different from 0, the two proportions, and therefore the two groups, 
will be estimated to be different.  
 
The data can be expressed in a 2x2 table:  
 

Table 1: number of patients actually observed in each category 
 

 Women Men Total 
ET 152 (29.9% of 509) 77 (14.3% of 538) 229 (21.9% of 1047) 
RT 357 (70.1% of 509) 461 (85.7% of 538) 818 (78.1% of 1047) 
Total 509 (48.6% of 1047) 538 (51.4% of 1047) 1047 
 
 
 
1. Chi-square test  
 
 The chi-square test allows the comparison of proportions. Like any statistical test, its 
principle is based on the null hypothesis: if there is no difference between men and women, 
then men and women make up a single group in which 229 patients (21.9%) had essential 
thrombocythemia, and 818 (78.1%) had reactive thrombocytosis. The chi-square test will 
measure, for each cell, the number of patients of difference between the patients observed ('O' 
as given by the study carried out) and expected ('E') if the proportions in the group as a whole, 
and in each subgroup, were equal. The table then becomes:  



 
Table 2: number of patients expected in each cell) 

 
 Women Men Total 
ET 509 x 21.9% (expected proportion of 

ET in 1047 patients) 
 = 111.5 (expected number = E) 

538 x 21.9% (expected proportion 
of ET in 1047 patients)  

= 117.5 (Expected number = E) 

 
 

229 
RT 509 x 78.1% (expected proportion of 

RT in 1047 patients)  
= 397.5 (expected number = E) 

538 x 78.1% (expected proportion 
of RT in 1047 patients)  

= 420.5 (expected number = E) 

 
818 

Total 509 538  1047 
  
 
 This new table has several notable features compared to the previous one:  
 

• Totals have not changed.  
• When the number of patients expected in cell 1 is fixed, the numbers expected in cells 2, 
3 and 4 are determined without any freedom: the sum of the rows, and the sum of the 
columns, must remain constant (because fixed by the number of patients actually observed 
in each row and each column!).  
• Therefore, the determination of the number of patients expected could only be done with 
a single degree of freedom, that of cell 1.  

 
The sum of the deviations between observed and expected could be written:   (O - E). 
 
It will be noted that this sum is equal to 0: indeed, the patients withdrawn from a cell have 
been added to the neighboring cell: the deviation of the first cell is the exact opposite of the 
second, that of the third, the opposite of the fourth.   
 
To counter this drawback, each deviation is squared. The sum therefore becomes:  (O - E)2. 
 
 However, an absolute difference cannot on its own account for a difference: the difference 
between 10000 and 10002 is equal to that between 2 and 4. The increase is 1/5000 in the first 
case, and 50% in the second... the difference must therefore be related to a denominator. 
Calculating the chi-2 brings it back to the number of expected events, and the chi-2 formula 
becomes:   
 

chi-2 =  (O - E)2  
              E 

 
In our example,   
 
chi-2 =   (O - A)2  =  (152-111.5)2 + (77-117.5)2 + (357-397.5)2 + (461-420.5)2    = 37  
                     A                  111.5              117.5               397.5                 420.5  
 
 It is then possible to consult the chi-square distribution tables for a degree of freedom and 
estimate what the probability is that 37 is similar to 0.  
 This probability is well below 1/1000 (in fact, less than 10-7!)  
 



The probability threshold for admitting the null hypothesis is usually set, by convention, at 
5%. The null hypothesis is accepted above the threshold, rejected below. The null hypothesis 
in our example having less than 1 in 10 million chance of being true, (p < 10-7 , < 0.05) is 
rejected. The two groups are not similar, and we deduce that they are probably different. 
There is a small contortion of logic here, because the whole basis of the calculation rests on 
the axiom of the equality of the two groups, and it is only on the basis of this axiom that the 
method of calculation is appropriate: however, the basis of validity of the calculation is not 
respected… We have simply shown that the two groups probably were not similar, and 
deduce from this that they are probably different.  
 
 Statistics do not establish truth: they seek to circumscribe an uncertainty, and this must 
always be kept in mind when interpreting the results. However, when the p-value is this low, 
one can very reasonably think that the two groups are different. When the p-value is close to 
0.05 and changing a few patients from group makes it go above or below 0.05, the discussion 
remains open!  
 
Warning!   

• The simple chi-square calculation described above is valid only if the number of expected 
events is greater than 5 in all cells of the table. Otherwise, an exact calculation using 
geometric distributions must be performed: that is the exact Fisher test, which can always 
be used in doubtful cases to give the calculation maximum rigor.  
 
• Several authors wanted to make the calculation more severe (therefore, to bring the sum 
of the chi-2 closer to 0), by introducing correction factors into the formula. This is the case 
with Yates' chi-2, which subtracts ½ from each (A-O) before squaring it.  
 
• The test of Mantel-Haenszel is the chi-square variant for stratified data: we would have 
applied it in our example if the diagnoses had been given by sex and by age group (20-40 
years, 40-60, 60- 80, > 80). The chi-squares are then calculated for each stratum separately, 
then added up over all the strata.  
 
• It is easy to understand that the value of the chi-2, and therefore the significance of the 
test, depends on the size of the population analysed: redo the calculation by dividing the 
numbers of each cell by 10 to reach a total sample size of 105 (frequent in clinical studies) 
(conserved proportions), and check the value of p!  

 
2. Generalization of the chi-2 test to a table with n rows and m columns: 
 
 The sum of the deviations between O and E can always be calculated. Simply, the number 
of degrees of freedom changes, and becomes equal to (n-1)(m-1): the number E is always 
fixed without freedom for the last cell of each line, and the last cell of each column. The 
probability of equality between the sum of the chi-2 and 0 must then be read on the 
distribution line of the chi-2 at the corresponding number of degrees of freedom (Statistical 
softwares provide the exactly calculated value of p).  
 
 A chi-square significantly different from 0 in a n*m table will not indicate where the 
difference lies: it can be distributed evenly between the different cells, or, much more 
frequently, between a few, or even two, table cells. The risk of reaching a number of expected 
events less than 5 in a multi-cell table increases with the number of cells, which makes the 
validity of the calculation uncertain: it is better to plan another analysis plan.  



 
III. QUANTITATIVE VARIABLES 

 
1. Mean, variance, standard deviation, median, percentiles, mode.  
 
 We now want to describe the ages of the patients in each group, and compare them. Age is 
a continuous quantitative variable. Its description can be made in the form of mean (sum of all 
the values divided by the number of subjects), and of variance (sum of all the squares of the 
deviations between the mean of the sample and the age of each subject, related to the number 
of subjects: as for the chi-2 test, the differences are squared so as not to cancel each other).   
 
The variance can therefore be written: V = (µ - a)2 ,  where 
                                                                            n  
 
- µ denotes the average age for the entire group,  
- a the age of each subject in the group, and  
- n the total number of people in the group.  
 
 This formula expresses the ideal variance of a large population. We usually work in 
medicine on much smaller patient samples, even in multicenter studies.   
 
 A sample can only provide an estimate, an approximate value, of the mean and the 
variance of the total population. For safety, it will be better on a sample to define this variance 
in a slightly broader way (it will thus be more likely to cover the variance of the total 
population). To do this, we correct the denominator by replacing n by n-1: the numerical 
value of the variance increases slightly, and its formula for a sample becomes:  
 

V =   (µ - a)2 
            n-1 

 
 This correction is all the more important as n, the sample size, is small, and all the more 
insignificant as n is large: the variance of a variable on a sample of 1000 people is more likely 
to be close to that of the total population, than the variance of the same variable on a sample 
of 15 people.  
 
 Similarly, we want to approximate the mean of the overall population from that of the 
sample, knowing however that if the sample had been selected differently, its mean would 
undoubtedly be a little different: it may be possible that the mean of glycated hemoglobin of a 
group of 40 type-2 diabetic patients is exactly the same as that of another group of 40 patients. 
However, it is more likely that it is not too far off. We define the notion of 95% confidence 
interval to express the fact that the mean would be within this interval in 95% of the 100 
potential samples of equal size that could be drawn at random from the overall population.  
 In other words, the average of the glycated hemoglobin level in the general population of 
type-2 diabetic patients - which we are trying to approximate - undoubtedly has a 95% chance 
of being included in the interval thus defined from the sample. We can define, in the same 
way, a confidence interval at 90 or 99 or 99.9%... depending on the precision we want to 
obtain. The 95% confidence interval is the one most often used in medicine.  
 
 
 



 The variance is very often expressed in the form of its square root, called the standard 
deviation (SD):                                                 ________ 

SD =  variance 
 
The interest of the t-deviation is that it allows the distribution of the variable to be assessed 
fairly quickly: for a sample size greater than 30, 95% of the sample will be between the mean  
 1.96*SD. The value corresponding to 1.96 increases when the sample size decreases: again, 
this increase reflects the fact that the precision decreases with the sample size, and therefore 
that the probable dispersion of the values increases.  
 
Warning ! 
 

 • This way of describing a quantitative variable is only valid when the distribution of 
values follows a Gaussian curve (normal distribution). 
  
 • The average only makes sense if: 
   - the values are distributed symmetrically around it, and if 
   - it corresponds to the most frequently encountered value (in our example, the 
largest age group). In fact, establishing an average age of 40 for a series comprising 20 10-
year-old children and 20 70-year-old adults would not make it possible to correctly grasp 
the reality of the patient group: there is no adult of 40 years in this group composed of two 
very different sub-groups, and calculating an arithmetic mean at 40 years would lead to a 
false description of reality.  
  
 • For the mean and its standard deviation to correctly describe the considered group, the 
distribution of the examined variable must therefore be symmetric and unimodal, in other 
words, the distribution of values must not reflect the existence of two different groups of 
patients, a biological rate, or any numerical value. Hodgkin's disease has two peaks of 
incidence, around 20-25 years old, then around 60-65 years old. To say that the average 
age of patients is 40 and to treat in the same way 75-year-old patients as 20-year-olds on 
the pretext of an average tolerance equal to that of 40-year-olds would be medical 
nonsense. 
  
 • It is always useful to draw a graph of the distribution of the data which enables its 
form to be assessed (symmetrical, unimodal). Most statistical softwares also make it 
possible to perform a test of normality of the distribution, which can guide subsequent 
statistical analysis.  

 
 When the distribution of the quantitative variable is not normal (Gaussian), other modes of 
data description and other modes of analysis must be preferred. Quite often in medicine, 
quantitative variables have a Gaussian distribution (statistically normal = Gaussian, to be 
differentiated from biologically normal = within biological standards) in healthy subjects 
(example: hemoglobin, leukocytes, platelets ...). This statistical normality very often 
disappears in the sick subject: leukocytes can vary from 10,000/mm3 to more than 100,000 in 
chronic myeloid leukemia or acute leukemia, platelets from 400,000 to more than 1,500,000 
in essential or reactional thrombocythemia, and one cannot generally extrapolate the normal 
distribution of the variable in the healthy subject to the asymmetrical distribution, sometimes 
logarithmic, sometimes difficult to describe, of the variable in sick subjects.  
 



 If the distribution is not statistically normal on the visual assessment or on the normality 
test, using the median and the percentiles will give a more precise idea of the population 
considered: the median defines the threshold in absolute value, below which lies 50% of the 
sample and above which is the remaining 50%. A median leukocytosis of 20,000/mm3 means 
that 50% of patients have a leukocyte count below 20,000, and 50% of them, higher. The 5th, 
10th, or 75th percentiles correspond to the leukocyte level below which 5%, 10%, or 75% of 
patients are found.  
 
 Finally, the mode is the third description of a quantitative variable: it corresponds to the 
value most often encountered in the sample. It is relatively little used.  
 
 In a statistically normal distribution, mean, median and mode are confounded. In a non-
normal distribution, they are usually distinct. A distribution with multiple peaks of equal 
height may include multiple modes, but will only include one median...and one mean, not 
representative of the whole sample.  
 
 Application :  
 
 In our example, the study of the age distribution gives the following results 
  
 Mean Standard Deviation Median Extremes 
Women 62.8 19.8 67 18.7-102 
Men 55.5 17.5 55.5 18.5-96.5 
 
 At first glance, the values given may be compatible with a normal distribution: subtracting 
or adding two standard deviations from the mean does not lead to aberrant ages (for example: 
negative), but to ages relatively close to the extremes. 
 
 At second glance, if median and mean are similar in men, they differ by more than 4 years 
in women, which makes one suspect, given the sample size, a disparity, or a non-normal 
distribution.  
 The question is whether this difference is significant or not. 
 
 
2. Comparison of means, or analysis of variance:  
 
 Are the men and women in our study the same age?  
The principle remains the same as for the chi-square test: the null hypothesis, simply, 
becomes:  
 The two averages are similar, or µwomen - µmen = 0 (µwomen representing the average age of 
women, and µmen the average age of men).  
 This simple subtraction, however, is not enough to ensure a correct comparison: one would 
be ready to recognize that the two means are different if the standard deviation were very 
small:  
 
 For instance :  

 • 62.8  0.2 would lead to a sample comprising 95% of patients between 62.4 and 63.2 
years, and 55.5  0.2 to a sample comprising 95% of patients between 55.1 and 55, 9 years 
(mean  1.96 SD). The age distributions of these two samples do not overlap, and it can 
therefore be assumed that, although close on average, the two samples are different.  



 • In our study, the standard deviation is much larger, and leads to an age distribution for 
95% of patients between 24 and 101.6 years for women, and 21.2 and 99.8 years for men : 
the overlap of these two distributions is considerable, and although the means are the same 
as for the preceding example, one would not spontaneously be inclined to recognize these 
two distributions as different.  

 
 It is therefore essential to take the variance into account: the test for comparing means is 
in fact an analysis of variance. The analysis of variance takes into account, on the one hand, 
the difference between the means, and on the other hand, the combined variance of the two 
distributions compared (= pooled variance).  
 
 This combined variance of the two distributions compared makes it possible to estimate the 
variance of the distribution of the mean difference: the pooled variance reflects the variance 
of all the samples compared, and the variance of the difference of the means, that of the mean 
difference between the two compared populations.  
 
 The variance of the difference in means is then used to calculate a confidence interval 
around the difference in means. If this interval contains 0, then the difference is considered 
similar to 0, and the two means similar. If the confidence interval does not contain 0, the 
difference of the means is considered to be far from 0, and the means to be different. 
Depending on the requirement, the confidence interval can be calculated at 95% 
(corresponding to a p=0.05), 99% (corresponding to a p=0.01), 99.9%... Significance of the 
difference in means can be given for any value of p.  
 
 The p value gives the probability for the difference of the means to be equal to 0. We 
admit, as above, that the means can be considered as different if this probability is less than 
5%, if p < 0.05.  
 
 
In summary, a graphical representation of our groups could be: 
 
                           µ1 - 1.961             µ1               µ1 + 1.96 1 
  Group 1                 _______________________  
  
                                                µ2 - 1.962            µ2               µ2 + 1.962    
  Group 2                                     _______________________    
 
 
µ1 - µ2 – 1.96p                 µ1 - µ2                   µ1 - µ2 + 1.96p 
          _____________________________________  
 
 
where  1 is the standard deviation of the mean in group 1,  
    2  is the standard deviation of the mean in group 2, 
   p represents the standard error of the difference of the means, calculated from the 
pooled variance of the two initial samples, group 1 and group 2.    
 
 If the analysis of variance relates to a complete population (extremely rare in medicine), 
the test used is the Z test, which takes into account the variance (with n in the denominator). If 



the analysis involves patient samples (usual case), the test to be used is the t test, which takes 
into account the corrected variance formula (with n-1 in the denominator). We can then refer 
to the t-test tables, to the line corresponding to the number of total patients -2 (number of 
degrees of freedom of the t-test), and find the probability that the value of t is different from 
0.  
 
 Of course, n-1 will be very close to n when n, the sample size, is large. In these situations, 
the Z test (taking n in the denominator), and the t test (taking n-1 in the denominator) will 
give similar results.  
 
 In our example, the t-test value is 6.7. We would not be surprised if its probability of being 
close to 0 is very low, given the sample size: it is, in fact, 0.0001. In other words, the 
probability that the age difference between the group of men and the group of women is equal 
to 0 is 1/10,000, in other words, the difference in the means is significantly different from 0 
with p = 0.0001. The null hypothesis is rejected, and we accept that there is a significant age 
difference between men and women: µwomen – µmen is significantly different from 0.  
 
 
3. Non-parametric test: Wilcoxon rank-sum test:  
 
 By looking roughly at the mean, the standard deviation, and the extremes of the ages of 
women and men, we saw that these values were compatible with a normal distribution. 
However, this summary examination is not sufficient. Let's take a closer look at the data: 
 
Fig 1: Age pyramid in years: group of women 
            Age (years)             Histogram                      Number of patients              Boxplot 
                                                  #              
        102.5+*                                   1                | 
             .***                                 6                | 
             .*******                            14                | 
             .******************                 35                | 
             .*****************************      57                | 
             .*******************************    62             +-----+ 
             .****************************       56             |     | 
             .**********************             44             *-----* 
         60  .*************                      26             |  +  | 
             .****************                   32             |     | 
             .********************               40             |     | 
             .***************                    30             +-----+ 
          40 .**************                     28                | 
             .*******                            14                | 
             .************                       23                | 
             .*********                          18                | 
             .*********                          18                | 
         17.5+***                                 5                | 
              ----+----+----+----+----+----+- 
              * each star can represent 1 to 2 patients 
 
 The shape of the age pyramid does not seem very Gaussian: there are three peaks, the first 
corresponding to 23 patients below the 40-year mark, the second to 40 patients below the 60-
year mark, the third to 62 patients above. It is possible that there are 3 different groups of 
patients in this population, and it may be interesting to examine these three groups separately 
in an exploratory study. The so-called 'boxplot' diagram confirms this impression: the mean 



(+) is different from the median (crossbar in the middle of the box), and the median is not 
located equidistant from the 25th and 75th percentile (lower crossbars and top of the 'box'. 
 
 The normality test performed by our statistical program confirms this impression: the null 
hypothesis (that of normality) is rejected with p ≤ 0.0001 (the probability that this distribution 
is normal is less than 1 chance in 10,000).  
 
 The look of the age pyramid for men is a bit different than for women, but there are also 
different peaks. The null hypothesis of normality is also rejected with p = 0.0001. (Fig 2) 
 
Fig. 2: Age pyramid for men  
           Age (years)              Histogram                  Number of patients            Boxplot  
                                                  #                     
          97.5+*                                  1                | 
              .**                                 3                | 
              .*****                             10                | 
              .***********                       22                | 
              .***********************           45                | 
              .**************************        51                | 
              .**********************            43             +-----+ 
              .**********************            44             |     | 
          57.5+*****************************     58             *--+--* 
              .******************************    59             |     | 
              .***************************       54             |     | 
              .********************              40             +-----+ 
              .******************                35                | 
              .***********                       22                | 
              .*********                         17                | 
              .*************                     25                | 
          17.5+*****                              9                | 
               ----+----+----+----+----+----+ 
               * each star can represent 1 to 2 patients  
 
 
 The analysis of variance is based on the assumption of the normality of the distributions 
and the equality of the variances between the groups. There are statistical tests that do not 
require the normality of the distributions or the equality of the variances, and make it possible 
to compare the groups thus inhomogeneous. This presupposes considering the variables 
differently and taking into account, instead of the numerical, absolute value of the quantitative 
variable, the rank it occupies in the distribution. 

 
 In our example, the patients would thus be classified in each group from the youngest to 
the oldest, and the test consists in evaluating the general tendency of the ages in one group 
compared to the other: the question 'is the average age taking into account the variance 
different in the two groups?' becomes 'is one group overall younger, or older, than the other?'  
 
Application : 
 
The age of the women is then compared to the age of the men by creating 3 categories of pairs 
each time comprising a single woman and a single man:  

1- The pairs for which the women are younger than the men  
2- Pairs for which women and men are of equal age  
3- The pairs for which the women are older than the men  



 
 In our example, the two 18-year women  are younger than the 537 out of 538  over-18-year 
men: there are therefore 2 x 537 pairs (= 1074 pairs) for which a group-1 patient  in is 
younger than a group-2 patient.  
 
 The 3 19-year women are younger than the (538 – 4) men aged over 19. There are 
therefore 3 x 534 (= 1602) additional pairs for which a group-1 patient is younger than a 
group-2 patient.  
 
 We thus continue to count all the pairs for which a group-1 patient is younger than a 
group-2 patient, and we add them (total number: x).  
 
 The two 18-year-old patients are the same age as the 18-year-old patient: there are 
therefore two pairs of equal age. We thus count all the pairs of equal age (total number: y) 
 
 The woman-patient aged 102 is older than all 538 men, as are the 101- 100-, and 99-year 
women-patient: this gives 4 x 538 pairs for which the women-patients are older than male-
patients, and all the 'older' pairs are counted for the whole series (total number: z).  
 
 The number of equal pairs is then divided equally into the "younger pairs" group and the 
"older pairs" group, which then include x + y/2 pairs for the first, and z + y/2 pairs for the 
second. Our two groups of patients are thus transformed into two groups of pairs, 'older' and 
'younger', which we will compare.  
 
 The null hypothesis becomes: the number of pairs is equal in the 'Younger' and 'Older' 
groups, or (x + y/2) - (z + y/2) = 0, and the comparison amounts to a comparison of 
proportions. Is the number of ‘younger’ pairs relative to the total number of pairs similar, or 
different, from the number of “older” pairs relative to the total number of pairs? Comparison 
of proportions refers to the type of analysis performed by the Chi-square test described above.  
 
 This so-called Wilcoxon rank-sum comparison test therefore ignores the distance between 
ages, and does not give additional weight to extreme ages, unlike the analysis of variance. It is 
not dependent on whether the distribution is normal or not. It allows the analysis of small 
samples: an calculated mean on 10 patients is likely not to be very precise, the variance may 
be important, and the comparison with another group of 10 patients is not very powerful. The 
rank-sum comparison test will relate to 10 x 10 = 100 pairs, rather than 20 individuals: in the 
case of small samples, the Wilcoxon rank test will probably be more efficient, but also more 
rigorous than a comparison of means because it is rare for a distribution to be normal under 
these conditions, and the analysis of variance could lead to a false estimate of p.  
 
 The U-Mann-Whitney test is based on the same principle and arrives, by a different 
calculation technique, at the same results as the Wilcoxon test. They are interchangeable and 
statistical software provides one or the other procedure indiscriminately.  
 
 Warning:  
 

 • Like any test, the Wilcoxon test has limitations. Each group must include at least 10 
patients, otherwise the test loses its precision and its value... but wanting to compare too 
small groups makes us leave the field of statistical analysis!  



 • In practice, the analysis of variance will give the same results as the Wilcoxon test in 
terms of p-value when the size of each group exceeds 30, even if the distributions are not 
Gaussian. It would have been possible in the example above, but only by observing the 
distribution of the variables does one realize that there are perhaps three age groups of 
patients.  

 
4. Ordinal variables:  
 
 Semi-quantitative variables of a particular type are often used in medicine: colon cancer is 
classified as Duke stage A, B, or C depending on the degree of invasion of the mucosa, and 
the severity increases from stage A to B then to C, but C is not three times as serious as A, or 
twice as serious as B. The same applies to stages I to IV of dyspnea, or to arteriopathy of the 
lower limbs. These stages cannot add up, multiply, or divide: they simply reflect a hierarchy 
in the severity of the disease rather than a strictly measurable quantity.  
 
 These semi-quantitative variables are called ordinal.  
 
 One may wish to compare, however, data of this type while preserving their hierarchical, 
or ordered character: does the administration of a diuretic in this group of patients with heart 
failure improve the stage of dyspnoea, otherwise said, does it make it pass from a higher order 
(III or IV for example), to a lower order (II)? 
 
 The Wilcoxon test is used for comparing the number of patients with stage I, II, III, or IV 
dyspnea in a treated and untreated group: each of the stages can be considered as a rank, and 
the Wilcoxon (or the U-Man-Whitney test) can help to identify the trend towards the less - or 
more - important stage of dyspnea.  
 
5. Generalization of the analysis of variance to several groups:  
 
 It may be interesting to compare the means and variances of a quantitative variable 
between several groups. In our example, we may want to compare the importance of weight 
loss between the groups 'psychogenic origin', 'cancer origin', 'nutritional or endocrine origin', 
and 'other origin'.  
 
 There are several ways to look at the problem:  
 
 The first is to do a single analysis, and examine whether there is, by means of a single test, 
a difference somewhere within the overall sample of the 4 subgroups. The basic principle is 
the same as for the analysis of variance between two groups, and the test used is the F-test 
(Generalization of the t-test to several groups). If the F-test does not show any significant 
difference within the x samples, we can conclude that there is probably no difference between 
the group with the weakest, and the group with the strongest, average. Consequently, there is 
probably no difference between the groups whose means are between the smallest and the 
largest, and our analysis can stop there.  
 
 If, on the other hand, the F-test shows a significant difference, there is undoubtedly a 
difference between the group with the smallest, and the group with the strongest, average... 
provided that these two groups have a sufficient sample size to arrive at a significant 
difference. It is also possible that the difference, in fact, lies between two intermediate groups 
with a larger sample size, or even between several groups, or even in a diffuse way between 



each group of patients. Like a multi-cell chi-square test, the F-test can detect a difference 
somewhere, but cannot locate it. However, it may be important to know whether, in the face 
of significant weight loss, it is better to first focus on one etiology or another...  
 
 To answer this question, we can consider comparing the groups two by two using a t test. 
Thus, to compare the 'psychogenic origin' group to the 'cancer origin' group, then to the 
'endocrine origin' group, then to the 'other somatic origin' group... and to continue with the 
'cancer'-'endocrine' comparisons, 'cancer'-'other', then 'endocrine'-'other' and to exhaust all 
possible logical combinations. For four groups, there are thus six logical possibilities. For 5 
groups, ten. For 6, 15. The systematic comparison of all the groups two by two could appear 
more rigorous, or more conveying interesting information, than the global analysis of the F-
test.  
 
 The problem, however, is that it multiplies the chances of showing a significant difference 
by chance: we accept a difference as significant if its probability  of being due to chance is 
inferior to 5%. Therefore, if 100 random comparisons are made, it is very likely that at least 5 
of them will turn out to be significant... by chance, since this is the very limitation of the 
statistical test. Out of 20 comparisons, at least one may be statistically significant by chance, 
and this significance would be devoid of any clinical or biological significance.  
 
 It is therefore necessary, to avoid falling into the trap of chance and drawing false 
conclusions from correctly collected but poorly analyzed data, to establish a safeguard. A first 
solution would be to divide the required p by the number of comparisons made: if 6 
comparisons are made, the risk of obtaining a difference at p = 0.05 is 5% x 6, or 30%. To 
reduce this risk to 5%, the easiest way is to divide the required p-value by 6, which reduces to 
0.05/6 = 0.0083 (6 comparisons made, 4 subgroups compared two by two), the p-value 
required to have less than a 5% chance of being wrong in asserting a significant difference. 
This adjustment is called the Bonferroni adjustment.  
 
 Some will claim, however, that this adjustment is too severe, and will not make it possible 
to recognize, in this exploratory approach without a priori hypothesis on the location of the 
difference, a difference really existing at the level of p = 0.05 between two given subgroups. 
Other types of adjustment of p, less severe, have been proposed: the adjustment according to 
Tukey (which requires groups of identical size, which is rare in medicine), according to 
Scheffé, which can be applied even if the groups are of different sizes, according to Neuman-
Peul, which consists of reducing the number of comparisons made (we start by comparing the 
two extreme groups: if there is no difference, the calculations stop there and only one 
comparison will have been made. If there is a difference, one of the extreme groups (with the 
lowest average for example) is then compared with the second opposite extreme group (with 
an average immediately lower than the group with the highest average). The tests stop there 
and we will only have made two comparisons: we declare that a priori there should be no 
other significant differences between the subgroups. If there is a difference, we continue the 
comparisons between the group with the lower mean and the group with the mean directly 
lower than the last group tested, and so on. This type of procedure makes it possible not to 
systematically compare all the subgroups formed, and to stop the comparisons of means as 
soon as the last difference tested is no longer significant: fewer tests are carried out, and the 
adjustment of p may be less severe.  
 
 There is always a certain trade-off, a certain balance, between rigorous testing and 
obtaining statistically significant results: the chances of detecting a significant difference are 



lower with a Bonferroni type adjustment than with a Neuman-Peuls type adjustment, but a 
significant difference in Bonferroni will be more likely to be really significant than a 
difference observed according to Neuman-Peuls...  
 
 In any case, comparisons of multiple means should only be made after adjustment of p, and 
the interpretation of these differences must take into account the rigor of the adjustment: the 
p-value < 0.05 does not establish alone a medical or biological truth, but represents an 
analysis 'clue' to facilitate the reading of the results.  
 
6. Generalization of the Wilcoxon test to several subgroups:  
 
 The comparison of a quantitative variable with a non-normal distribution, or of an ordinal 
variable can be interesting between several subgroups: one may wish to compare the action of 
a diuretic (group 1), of an inhibitor of converting enzyme (group 2) and a beta-blocker (group 
3) in the treatment of heart failure, and to assess how many patients in each of the three 
groups progress to the NYHA dyspnoea stage(s) (rated from I to IV) lower.  
 
 A comparison of the average will not be possible, because an average of the dyspnea stage 
cannot be calculated. A Wilcoxon test, however, could be performed for two-by-two 
comparisons.  
 
 The Kruskall-Wallis test represents the generalization of the Wilcoxon test for comparing 
non-Gaussian ordinal or quantitative variables between multiple subgroups. It is also 
equivalent to the Wilcoxon test for the comparison between two groups.  
 
7. Comparison between two quantitative variables:  
 
 It is no longer a question of comparing two means, or the variance of a quantitative 
variable between two groups (the extent of weight loss in patients with a somatic or 
psychogenic etiology), but of examining whether there is a relationship between two 
quantitative variables: is creatinine level a function of body mass? Are serum levels of a 
potentially nephro- or myelotoxic drug a function of creatinine clearance? Is beta2-
microglobulin level a function of lymphoma tumor mass? Is there a relationship between the 
importance of HIV viremia and the number of circulating CD4 lymphocytes? Is the level of 
glycosylated hemoglobin a good reflection of glycemic averages?  
 
 These questions all come under the notion of correlation, and the relationship can first be 
apprehended on a graph: the number of viral copies is plotted on the x axis, the number of 
circulating CD4 lymphocytes on the y, and the shape of the points cloud can be appreciated. If 
the points are all on a perfect line, there is most certainly a clear correlation between the two 
variables, with two exceptions: if the points are all on a vertical cloud, this means that the y 
values (the number of CD4), do not vary according to the viremia, but can take all the values 
for a given constant viremia. There is therefore no correlation, and the slope of the (vertical) 
line is equal to + infinity. If the points are all on a horizontal line, the CD4 count remains 
constant regardless of the value of the viremia: there is no correlation here either, and the 
slope of the horizontal line is equal to 0.  
 
 For there to be a correlation, the slope of the line must first be significantly different from 
0 and infinity: the number of circulating CD4 must vary with the number of viral copies, the 
hemoglobin level glycosylated must vary with the average glycaemia. The slope of the line 



will be positive (greater than 0), if the increase in one rate is associated with the increase in 
the other. It will be negative (less than 0) if the increase in one rate is associated with the 
decrease in the other.  
 
 Examples:  
 Ttere is a positive correlation between the level of glycosylated hemoglobin and blood 
sugar levels, but the correlation is negative between the number of HIV viral copies and the 
number of circulating CD4 lymphocytes.  
 
 The basic model of the equation of a correlation is therefore the equation of a straight line: 
y = a.x + b, where a represents the slope of the line, and b the intercept, or the value of y when 
x is equal to 0. Biological values equal to 0 are rare in medicine, at least for biological 
parameters baseline (Leucocytes count, blood ionogram, coagulation parameters, etc.) or 
when the assay techniques are sensitive enough to detect low levels (a TSH strictly equal to 0 
is rare with the ultra-sensitive assay technique). The intercept is therefore often a value 
extrapolated by the equation, and it is not certain that it corresponds to a biologically observed 
value.  
 
 It is rare, however, that in biology or medicine, the points of correlation between two 
variables can be plotted exactly on a straight line. They most often form a cloud whose 
correlation line is the bisector. The equation of the line is not enough to satisfactorily describe 
the observed phenomenon. As in the comparison of means, where the variance describes the 
dispersion of values around the mean, there is a variance of each of the two variables around 
the regression line. For a given x (a number of viral copies), the corresponding y (the number 
of circulating CD4 lymphocytes) can be more or less far below or above the line. The best 
line, the one that will best represent the correlation, is the one for which the sum of all these 
distances (the distance of each y from the line) is the smallest possible. Some of these 
negative distances (when the observed y is located below the line), would artificially reduce 
the sum of the distances between the observed y, and the line (figuring the y predicted by the 
model): the solution to this problem consists in adding not the negative and positive raw 
distances, but the square of these distances. The best straight line describing the phenomenon 
is the one for which the sum of these squares will be minimal: the technique for producing the 
straight line is called the technique of the sum of the least squares (least square sum) (Fig. 3). 
 
 In this example, we have produced a correlation graph between the fibrinogen values and 
those of the platelet count in a population of reactive hyperthrombocytosis (essentially 
inflammatory), and wanted to test the hypothesis of physiological regulation mechanisms of 
the risk of thrombosis in these patients.  
 
 We first realize that there is a negative correlation (the greater the thrombocytosis, the 
lower the fibrinogen), with a correlation coefficient of – 0.34690. Moreover, this correlation is 
significant since the value of p (equal to 0.0016) is well below the classically accepted 
threshold of 0.05.  
 
 
 
 
 
 
 



Fig. 3 : CORRELATION ENTRE FIBRINOGENE ET PLAQUETTES 
                                                
Légende: A = 1 observation, B = 2 observations, etc. 
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 The blue arrow represents the distance between the observed value of y (point A on our 
graph) and its expected (calculated) value on the linear regression line: this is the distance 
(y- y’). The orange arrow represents the distance between the observed value of x and its 
calculated value on the linear regression line: this is the distance (x-x’). We understand that if 
all the observed values of y and x were on the line, then the correlation between the two 
values would be perfect: y would always be exactly predictable as a function of x, and vice 



versa. The correlation coefficient would be equal to 1 in absolute value. The further the 
observed values y and x 'walk' away from the line, the looser the correlation: the larger the 
distances (y-y') and (x-x'), the more scattered the point cloud, the weaker the correlation, the 
closer the correlation coefficient will be to 0.  
 
 The correlation coefficient r (or rho) takes into account all of these distances y-y' and x-x' 
by relating them to the number of observations. It also takes into account, by its sign, the 
slope of the regression line: it will be negative if the slope is downward (the higher the 
platelets, the lower the fibrinogen) and positive if the slope is upward (the more the platelets 
are higher, the higher the fibrinogen). It therefore translates the sum of all the deviations of 
the observed points, compared to the calculated points located on the line.  
 
 The slope of the line a (or alpha) reflects the increase or decrease in the value of y when 
x varies: if alpha = 2, the value of y increases twice as fast as the value of x.  
 
 The whole procedure (calculating the equation of the line, the variance of x, the variance of 
y, the correlation coefficient) is called linear regression. Again, a correlation will be said to 
be significant if the slope of the line is sufficiently likely to differ from 0 or from infinity, and 
if the regression coefficient is sufficiently likely to differ from 0. In other words, if the 
regression is far enough from a horizontal or vertical line, and whether the observed points are 
close enough to the estimated line. The p-value of the correlation takes these two ingredients 
into account, and we can thus see significant correlations with less than 5% chance of being 
wrong, with a low slope but a correlation coefficient close to 1, or at inverse with a significant 
slope but a low correlation coefficient. Most often, a significant correlation signs a trend, but 
it is rare that in medicine one can predict knowing x, a value y from the equation of regression 
(unlike what is done in physics or chemistry). 
 
 

IV. MULTIVARIATE ANALYSIS:  
NOTION OF LOGISTIC REGRESSION 

 
 All the tests presented so far constitute the tools of univariate analysis: analysis of a 
variable according to a parameter (group or sub-groups, other variable in simple linear 
regression). There are many situations in medicine in which univariate analysis quickly marks 
its limits: we know that arterial hypertension, hypercholesterolemia, diabetes, smoking, stress, 
are risk factors for cardiovascular disease; but what is the respective weight of each of these 
risk factors in the occurrence of a myocardial infarction? Are these risk factors independent of 
each other, or do some of them only 'translate' the others (are smoking and high blood 
pressure, for example, only expressions, partially or totally, of stress)? Are some of these risk 
factors synergistic or, on the contrary, antagonistic? The same questions may arise for the 
known risk factors for breast cancer, lung cancer, the occurrence of a thromboembolic 
disease, or even diseases whose objective cause is known: Koch Bacillus (KB) is at the origin 
of tuberculosis, but contact with KB alone is not enough to trigger the disease...before the 
discovery of KB, the risk factors for multifactorial tuberculosis disease would have included 
malnutrition, promiscuity, unfavorable socio-economic conditions ... we would now add all 
the causes of immunosuppression, and even more recently, the way the immune system 
reacts, and in particular macrophage innate immunity, in contact with KB. The multifactorial 
disease before the discovery of KB, which became monofactorial with its discovery, becomes 
de facto multifactorial again with progress in immunology and genetics...  
 



 It is possible, to assess the role of each of these risk factors, to 'weigh' them independently, 
to carry out a succession of univariate analyzes by stratifying by each of them: one could 
compare, in a study cohort, the incidence of myocardial infarction among smokers and non-
smokers; then, among smokers on the one hand, and non-smokers on the other, the incidence 
of infarction among hypertensive, and non-hypertensive, patients; then, in hypertensive 
smokers, normotensive smokers, hypertensive non-smokers, and normotensive non-smokers, 
the incidence of infarction in diabetics on the one hand, and non-diabetics on the other ; then, 
at.... and so on.  
 
 This succession of univariate analyzes makes it possible, of course, to determine whether 
stress adds an additional risk of heart attack in each of the sub-categories, and makes it 
possible to measure the importance of this risk: if it is higher in the sub-smoker-hypertensive-
diabetic category than in the smoker-hypertensive-non-diabetic subcategory, it is that perhaps 
stress acts synergistically with one of the first three risk factors... but we will not know not 
which one.  
 
 It goes without saying that the power of the tests decreases with the size of the sample: 
stratification into subgroups requires a very large initial sample size if the last subgroups must 
still include a sufficient number of patients... In practice, this strategy, although theoretically 
satisfactory, is rarely possible. It is also very heavy.  
 
 The alternative is represented by logistic regression: without going into mathematical 
details, the principle of its equation could be written as follows (be careful, this expression is 
mathematically false, but its overall meaning is correct).  
 

Illness = intercept + OR1. RF1 + OR2.RF2 + OR3.RF3 + OR4.RF4 + ...ORn.RFn. 
 
 In this equation, the disease is generally expressed in a binary way: it exists, or it does not. 
The different risk factors (RF) can be expressed in a binary way (1 or 0), in an ordinal way (1, 
2, 3, 4...), or even in the form of a continuous quantitative variable. When it is a binary 
variable, we can extract from the coefficient assigned to it the odds ratio (OR), representing 
the relative risk linked to the risk factor considered taking into account the risk corresponding 
to the other risk factors. In other words, OR1, OR2, OR3, OR4, quantify the risk associated 
with each risk factor, knowing that the disease is also explained by the other risk factors kept 
in the equation.  
 
 In practice, the risk factors significant at 0.1 in univariate analysis (for which p < 0.1) are 
introduced into the logistic regression model. Risk factors that are not significant in univariate 
analysis can be forced into the model if this seems to be biologically or medically justified. 
There are several types of procedures in logistic regression, but the principle consists in first 
introducing in the model the most significant risk factor; if it does not by itself explain the 
entire disease, the second risk factor is introduced into the model; if found significant, it 
remains in the model. If not, it comes out and the third is then introduced and tested. The 
introduction of the xth risk factor stops when no more significant risk factor is found, in other 
words, when the introduction of an additional risk factor no longer provides any additional 
explanation for the occurrence of the sickness.  
 
 
 
 



 Example: 
  If in cardiovascular diseases, hypertension or smoking were only an expression (only a 
translation) of stress, but did not by themselves explain part of the incidence of myocardial 
myocardium, they would be eliminated from the model in favor of the stress variable. If, on 
the contrary, stress did not play a role, and hypertension or smoking acted as confounding 
factors allowing stress to appear significant in univariate analysis, stress would no longer 
come out significant from the logistic regression model, which would only keep hypertension 
and smoking as true risk factors.  
 
 The odds ratio for each risk factor tested and their confidence interval can be calculated 
from the parameters of each risk factor integrated into the logistic regression equation. We 
can also test the interaction between two risk factors. Imagine, in a study of mesothelioma risk 
factors, that smoking is coded 1 if present, 0 if absent. Asbestos exposure will be coded in the 
same way. It is easy to create a variable reflecting the simultaneous exposure to the two risk 
factors: tobacco.asbestos will take the value 1 (1x1) when the two risk factors are present, and 
0 (1x0, 0x1, or 0x0) when there will be no simultaneous presence of smoking and exposure to 
asbestos. We can write the following logistic regression equation:  
 

mesothelioma = intercept + OR1.Tobacco + OR2. Asbestos + OR3. Tobacco.asbestos 
 
 If the tobacco.asbestos variable is retained in the model as significant with an odds ratio 
greater than 1, it means that the tobacco-asbestos association adds a significant risk in relation 
to exposure to tobacco on the one hand, and to asbestos on the other hand. Therefore,  there is 
synergy between tobacco and asbestos.  
 If the tobacco-asbestos association is retained as significant, but with an odds ratio lower 
than 1, it means that the association is antagonistic: the combined presence of the two risk 
factors reduces the overall risk of occurrence of the disease (the antagonists are rather rare in 
medicine!).  
 If the association of the two, combined, risk factors is not retained in the model, it is 
because it does not modify the risk already expressed by the presence of tobacco on the one 
hand, and asbestos on the other hand. : the two risk factors are neither synergistic nor 
antagonistic, but add up.  
 
 Logistic regression is therefore an extremely powerful and useful tool in medicine or 
biology. It makes it possible to carry out a fine analysis while avoiding the pitfall of the 
gigantic sample sizes required by the stratified univariate analysis. It makes it possible to 
weigh each risk factor, to measure its independence from the others, to test the interactions, to 
control the confounding elements.  
 

V. ANALYSIS OF THE PROGNOSIS. SURVIVAL CURVES 
 
 Survival curves represent the essential tool for the analysis of the prognosis: the 
'living/dead' event can of course constitute the descriptive factor used, but any other event 
translating the prognosis can also be: occurrence or not of a complication, occurrence or not 
of recovery, occurrence or not of an intercurrent illness: their common characteristic is that 
each time, the event may have already occurred at the time of data analysis, or may not have 
occurred (because it has not yet occurred, or because it will not occur), and we then speak of 
censored data. The survival curves therefore include patients for whom it is not known 
whether the event studied will occur, or not, one day. It may seem presumptuous to analyze 
data whose reality in the future we do not grasp: doctors, biologists, statisticians are all 



human, and the future does not belong to them... it is true. A survival curve therefore never 
makes it possible to describe what will happen to a patient: it makes it possible at most to 
describe what happened to previously known patients, and a probability of survival at some 
point in the evolution of the disease. A survival curve should never be used to tell a patient or 
his family that his risk of death, his chance of recovery, his risk of a complication occurring is 
x% at one year: for a given patient, the risk of death is either 100% or 0%. There is no 
alternative between the fact to live, or not to live. At the present time, no science makes it 
possible to predict the future, and using a scientific vocabulary, even a calculated approach, to 
try to approach it never makes it possible to be affirmative at the level of an individual: the 
field of prognosis is undoubtedly the one in which medicine offers the more uncertainties, and 
these uncertainties are not limited by analytical techniques.  
 

How do you construct a survival curve? Weaknesses and strengths: 
 
1- Time 0 
 
 The only fixed times in a life are those of birth, usually dated with precision, and of death, 
the time of which can be known... once it has occurred. The only survival curve providing 
indubitable information would therefore be the one counting down the time between birth and 
death. To analyze a duration, it is necessary to start if possible from an identical time 0 for all 
the patients.  
 
 When we are interested in the prognosis of a disease, time 0 is more difficult to define. We 
very often consider time 0 the moment of diagnosis of the disease, and we say, a little lightly, 
that the prognosis of lung cancer is x% survival at two years. The limits appear in an obvious 
way: time 0, that of the diagnosis, is not the same for the patient screened in occupational 
medicine (small asymptomatic round spot) than for the one diagnosed in front of a massive 
deterioration of the general state with metastases bones and brain. One could, for more 
precision, stratify the time 0 according to the stage of the cancer. However, screening studies 
have shown that time 0 was not the same, at the size of an asymptomatic lung round image on 
a routinely performed X-ray, for a lesion diagnosed in the year of the first screening carried 
out in a company, year during which tumors that may have been present for 2, 3, 4... years, 
and the following year, that of the second screening, where only tumors that have appeared in 
the last twelve months are screened . At 1 centimeter in diameter, a tumor developed in 3 
months is probably more aggressive than a tumor of the same diameter evolving for 3 years. 
The time 0 of the diagnosis of the tumor is not the same: an aggressive tumor at three months 
can already be advanced, an indolent tumor at three months can still be in its pre-clinical 
phase...  
 
 Time 0, prior to the construction of any survival curve, is therefore defined by the means of 
observation at our disposal. We will remember before constructing a survival curve that the 
sun probably exists before its sunrise time, that its sunrise time changes at any point on the 
surface of the globe, and that, if noon within a time zone will strike at the same time, true 
noon will be different for each individual depending on their location in the time zone. An 
approximation of the same nature, but of undoubtedly greater amplitude depending on the 
pathology, governs the construction of a survival curve.  
 
 
 
 



2- Notion of conditional survival  
 
 The ideal would of course be to have the same observation period for all the patients 
included in the study: we could thus affirm, while retaining the uncertainty of time 0, that at 
ten years from the diagnosis the survival of the cohort reaches, for example, 50% (which does 
not mean, once again, that the chances of survival of Mr. P. Dupont at 10 years are 50%). 
However, patients do not all start their disease at the same time: some will be followed for 10 
years at the time of the analysis, others only for 1 year. The first will have had time to heal, to 
go into remission, to die, the others, not. We speak of censored data, when the measured event 
has not yet occurred, and of uncensored data, when it has occurred. If death is the event 
measured, the censored data will correspond to patients alive at the time of the analysis (their 
date of death is not known).  
 
 The cumulative survival probability curve based on the product of the conditional 
probabilities (Kaplan-Meier curve) is therefore constructed as follows: all patients (100% of 
them) are alive at the time of diagnosis. The survival curve starts, on the ordinate, from the 
value 100. At the first death (let's put it 3 months from time 0), 1% of the initial population 
disappears: the curve descends by a step of 1% to the level of the abscissa '3 months'. Imagine 
that two deaths occur 6 months from time 0: the curve will then record a downward march of 
2% on the basis of the 99 survivors, at the abscissa '6 months'. If only 5 patients have been 
followed for more than 5 years (either because all the others died, or because they were 
diagnosed during the last 4 years...) and two patients among these 5 die at 5 years, the 
downward step will be 2/5, or 40% of the residual population.  
 
 This explains that on a survival curve, the downward steps become more and more marked 
towards important times. It also appears that they are becoming less and less precise, because 
they relate to an increasingly reduced sample size: the confidence interval around the value, 
and therefore the uncertainty about the value, increases when the size of sample decreases, 
and it inevitably decreases along the survival curve.  
 
 Caution is therefore called for when discussing the probability of survival in medicine, and 
certain points should always be borne in mind:  
 

 - A probability of survival applies to a group of patients, but does not apply to each 
individual patient. We do not know, because the statistical tool does not answer this 
question, if the patient diagnosed on this day will live, or will not live, in 5 years: his 
survival will be 100%, or will not be. His probability of survival will not be equal to that of 
the group.  
 - The probability of survival at x years is valid for the group only at time 0: the 
conditional probability of survival varies as a function of time, and for the example of the 5 
patients surviving at 5 years among 100 patients initially included, it will be, at this 
moment of the curve, 40% for the time to come.  
 - The future, even surrounded by statistics, remains a very difficult data to approach.  

 
3- Comparisons of survival curves in univariate mode: the log-rank test.  
 
 Two survival curves always end up meeting, it is only a matter of time… in the long term, 
the difference cannot be significant. Consequently, their comparison will depend on the speed 
with which each event (death, occurrence of such a complication) will occur during follow-
up, and on the number of events occurring at a given time. At time t, x% of patients in one 



group, y% in the other, will survive. The comparison of proportions, at that instant t, can 
therefore be carried out by a chi-2 test. At the next moment, one of the proportions may have 
changed: a second chi-square test will then have to be carried out. It will be the same for each 
change of proportion on one or the other curve, in other words, for each new stair step on one 
or the other curve.  
 
 The overall comparison of all the survival curves will therefore depend on the result of all 
the comparisons of proportions carried out at each change in one of the curves analyzed, i.e., 
in statistical terms, on the sum of all the chi-2 performed adjusted for varying sample size at 
each step. The log-rank test performs this analysis and summarizes all the added differences: 
it is a particular form of Mantel-Haenszel test.  
 
 In practice, this statistical test measures the differences between the two survival curves 
compared, for each stair step occurring on one or the other of the survival curves. It then tests 
the null hypothesis: the sum of these distances is equal to 0. If this is true, the two curves are 
not very far from each other, and they reflect similar survival. If this is not true, then the two 
curves are far from each other, and reflect different survivals.  
 
4- Comparison of survival curves in multivariate mode: the Cox model 
 
 Several elements can be taken into account in survival: the presence or absence of disease, 
of course, but also the type of treatment received, compliance with treatment, compliance 
with the initial protocol, the presence of co-morbidities, the existence of other risk factors, the 
stage or grade of the disease, the patient's clinical condition measured by a score at the time of 
diagnosis, etc.  
 
 All these elements cannot be represented on a survival curve, but one can imagine that 
some of them may be more important, for the survival of the patient, than the type of 
treatment received. If we compare two treatments A and B, two forms of the disease X and Y, 
it will be important to equalize the possible prognostic factors between the two groups. This 
equalization is the goal of randomization in a controlled trial, but it may not always be 
achieved. It is rarely reached when there is no randomization, and taking into account the 
various factors involved in survival should then call for a staged stratification, and the 
comparison carried out in subgroups of homogeneous patients for each prognostic factor. This 
would quickly lead to a multiplication of subgroups with reduced sample size, and a 
significant loss of power for the study. The results would become difficult to interpret. 
 
 Another possibility consists in integrating all the variables that can play a role in the 
prognosis in a logistic regression analysis model, adapted to the analysis of survival curves 
(capable of taking into account censored data, and not censored). This particular logistic 
regression model is the model published by Cox, which will be able to give an estimate of the 
relative risk associated with each prognostic factor. If this relative risk is significantly 
different from 1, the considered factor will play a significant role in the prognosis. Otherwise, 
it may be considered as non-determining. In all cases, the model will give an estimate of the 
relative weight of each prognostic factor in the occurrence of the measured event (death, 
occurrence of an iatrogenic or natural complication, etc.), without loss of power secondary to 
any stratification. On the other hand, only observations without missing data for all the 
variables analyzed will be taken into account, which can result in a significant reduction in the 
size of the sample if these variables have not been correctly entered: as for any clinical study, 



the rigor in the collection of data determines the reliability of the results, regardless of the 
degree of sophistication of the analysis used.  
 
 
 

CONCLUSION 
 
 

 
 Statistical analysis is essential in medicine and biology to test trends at the level of samples 
(whether they are groups of patients, cell colonies, groups of genes, families of proteins, etc.) 
or populations. The trends tested will be valid for the populations tested, but cannot be applied 
as such to a given individual, in particular for survival studies integrating, in addition to 
known data (uncensored), data of unknown value at the time of analysis (censored). The 
analysis is only valid if the data have been correctly collected, are complete, and if they 
correspond to an a priori working hypothesis. 'Fishing' analysis in a database, looking for 
statistically significant associations or correlations with no biological or clinical basis 
foreseen by the investigator, is likely to yield significant results only by chance and should 
therefore be avoided. It is possible that this type of unplanned analysis is at the origin of a 
large part of the contradictory results reported in the medical literature, and the controversies 
then engaged could be based, at least partially, only on effects of chance… and not on the 
basis of acquiring so-called 'scientific' knowledge. As for any observation method, the 
conditions of application, the indications and the contraindications of the various statistical 
tests must be known by the doctors who will de facto be the users of the results. Any result 
then must be interpreted according to the entire methodology of the study prior to the 
statistical test, and the conditions under which the test was applied.  
 
 A statistical test rarely proves. It tries to circumscribe the fact of chance around the 
observed events, provided that the model underlying the test describes the multifaceted reality 
of life fairly well (this can sometimes be quite difficult to assert). On the other hand, it makes 
it easier to avoid undue assertions (one treatment is superior to, or different from, another) 
when the difference in frequency of the events observed is too close to 0.  
 
To know more :  

- Bouyer J. Statistical methods. Medicine-Biology. ESTEM, INSERM Editions, 2000.  
 
- Bailer JC III, Mosteller F. Medical uses of Statistics, 2nd Edition, 1992, NEJM Books, 
Boston, Massachusetts.  
 
- Hill C, Com-Nougué C, Kramar A, Moreau T, O’Quigley J, Senoussi R, Chastang C. 
Statistical analysis of survival data, 2nd Edition, 1996. INSERM Médecine-Sciences, 
Editions Flammarion.  

 
 
 
 
 
 
 
 



 
 
 
 
Table I: Summary of common statistical tests, their indications and limitations.  
 

Type of variable Test indicated Limits of 
applicability 

Alternative required 
if limit of the 

indicated test reached 
Dichotomous 
(proportions), 
2 groups 

Chi-2 with 1 degree 
of freedom 
Alternatives: Yates 
(Chi-2 corrected) 
Mantel-Haenszel 
(Chi-2 for stratified 
data) 
 

At least one of the 
cells in the table 
contains less than 5 
expected events 

Exact Fisher test 

Dichotomous 
(proportions), 
multiple groups 

Chi-2 with degrees of 
freedom = (number 
of columns -1) * 
(number of rows -1) 

Doesn't tell where a 
difference is if the 
test is significant, but 
just says that there is 
a notion of difference 
within the data table. 
 
Will give false 
results if one of the 
table cells contains 
less than 5 expected 
events  

If one of the cells of 
the table contains 
less than 5 expected 
events,  
- a Fisher test is 
theoretically 
possible, but few 
computers will have 
sufficient memory to 
perform it....  
- know that the 
results are distorted, 
difficult to interpret, 
and consider another 
type of data analysis.  
 

Ordinal,  
2 groups 

Wilcoxon rank sum 
test 

Each group must 
contain at least 10 
observations 
 

 

Ordinal,  
multiple groups 

Kruskall-Wallis Indicates whether 
there is a difference 
somewhere between 
the different groups. 
Does not indicate 
where the difference 
lies. 
 

 

Quantitative,  
2 groups 

Analysis of variance 
(comparison of 
means)  
 
Z-test if very large 

The distribution of 
variables must be 
normal (Gaussian) in 
both groups. 

If the distribution is 
not normal, use the 
Wilcoxon test as for 
the ordinal variables. 
The Wilcoxon test 



population  
t-test if sample: usual 
clinical situation 

and the analysis of 
variance will give 
similar results if n > 
30 

Quantitative, 
multiple groups 

Analysis of variance  
 
 
 
 
F-test: global 
analysis  
 
 
 
 
 
Subgroup analysis 
with adjustment 
according to 
Bonferroni, Scheffe, 
Tukey 

The distribution of 
the variables must be 
normal in the 
different subgroups.  
 
Indicates that there is 
a difference 
somewhere between 
the groups. Does not 
indicate where the 
difference lies.  
 
Indicates which 
subgroups differ 
from each other. The 
severity of the test 
depends on the type 
of adjustment 
(Bonferroni being the 
most rigorous) 
 

If the distribution is 
not normal, use the 
Kruskall-Wallis test 
as for the ordinal 
variables. 

Relationship between 
two quantitative 
variables 

Correlation test 
according to Pearson 

The distribution of 
the two variables 
must be normal. 
  
Test very sensitive to 
extreme values 
(outsiders) 
 

If the distribution is 
not normal, use the 
rank correlation test 
(according to 
Spearman). 

Relationship between 
a quantitative 
variable and several 
quantitative variables 

Multiple linear 
regression 

The distribution of 
all the variables must 
be normal. 

If the distribution is 
not normal, or for 
particular distribution 
variables, there are 
nonlinear regression 
models, with or 
without 
transformation of the 
variables 

Relationship between 
a dichotomous 
variable and several 
dichotomous, ordinal 
or quantitative 
variables 

Logistic regression Allows the 
estimation of 
interactions between 
variables, the control 
of confounding 
elements and effect 
modifiers. Does not 
require the normal 

 



distribution for 
quantitative 
variables. 
 

Construction of a 
survival curve 

Kaplan-Meier model Establishes the 
conditional 
probability of 
survival. Its accuracy 
decreases as follow-
up progresses and the 
number of patients 
followed decreases 

 

Comparison of two 
survival curves 

log-rank test  
 (equivalent to the 
Mantel-Haenszel 
test) 

Does not take into 
account co-factors 
involved in survival 

 

Comparison of two 
survival curves, 
taking into account 
co-factors, 
confounding 
elements, or effect 
modifiers 

Cox model Used to determine 
the respective weight 
of the different 
factors involved in 
survival. Allows to 
estimate the relative 
risk for dichotomous 
factors. Allows you 
to identify 
confounding factors 
or effect modifying 
factors. 
 

 

 
 
 


